翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

character sum : ウィキペディア英語版
character sum
In mathematics, a character sum is a sum
:\Sigma \chi(n)\,
of values of a Dirichlet character χ ''modulo'' ''N'', taken over a given range of values of ''n''. Such sums are basic in a number of questions, for example in the distribution of quadratic residues, and in particular in the classical question of finding an upper bound for the least quadratic non-residue ''modulo'' ''N''. Character sums are often closely linked to exponential sums by the Gauss sums (this is like a finite Mellin transform).
Assume χ is a nonprincipal Dirichlet character to the modulus ''N''.
==Sums over ranges==
The sum taken over all residue classes mod ''N'' is then zero. This means that the cases of interest will be sums \Sigma over relatively short ranges, of length ''R'' < ''N'' say,
:M \le n < M + R.
A fundamental improvement on the trivial estimate \Sigma = O(N) is the Pólya–Vinogradov inequality (George Pólya, I. M. Vinogradov, independently in 1918), stating in big O notation that
:\Sigma = O(\sqrt\log N).
Assuming the generalized Riemann hypothesis, Hugh Montgomery and R. C. Vaughan have shown〔Montgomery and Vaughan (1977)〕 that there is the further improvement
:\Sigma = O(\sqrt\log\log N).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「character sum」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.